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Fire danger predicted by the Canadian Fire Weather Index, a system based on

point-source weather records, is limited spatially. NOAA-AVHRR images were

used to model two slow-drying fuel moisture codes, the duff moisture code and

the drought code of the fire weather index, in boreal forests of a 250,000 km2

portion of northern Alberta and the southern Northwest Territories, Canada.

Temporal and spatial factors affecting both codes and spectral variables

(normalized difference vegetation index, surface temperature, relative greenness,

and the ratio between normalized difference vegetation index and surface

temperature) were identified. Models were developed on a yearly and seasonal

basis. They were strongest in spring, but had a tendency to saturate. Drought

code was best modelled (R250.34–0.75) in the spring of 1995 when data were

categorized spatially by broad forest cover types. These models showed improved

spatial resolution by mapping drought code at the pixel level compared to

broadly interpolated weather station-based estimates. Limitations and possible

improvements of the study are also discussed.

1. Introduction

Forests cover nearly 42% of Canada’s land area, over half of which produce

merchantable timer. About 9000 forest fires occur yearly in Canada, burning more

than two million hectares and incurring nearly half a billion dollars in suppression

costs (Canadian Council of Forest Ministers 2004). In Canada, fire danger is rated
daily using the Canadian Forest Fire Danger Rating System (CFFDRS), a semi-

empirical modular system that utilizes weather, fuel, topography, and ignition

parameters as inputs through four subsystems (Stocks et al. 1989). One of the

subsystems, the Canadian Fire Weather Index (FWI) system, computes potential

mid-afternoon fire danger from noon-time weather station records of dry bulb

temperature, relative humidity, 10 m high open wind speed, and 24-hour

precipitation measurements (Van Wagner 1987).

The FWI system is comprised of three moisture codes: the fine fuel moisture code

(FFMC) represents quick-drying surface litter fine fuel moisture contents, the duff

moisture code (DMC) represents slow-drying, moderate depth, loosely compact duff

moisture contents, and the drought code (DC) represents slow-drying, deep layer,
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compact organic matter moisture contents. These three moisture codes have time

lags of two-thirds of a day, 15 days, and 53 days, respectively (Lawson et al. 1997).

Time lags represent the time necessary for a fuel type to lose about two-thirds of its

free moisture at equilibrium (when air temperature is 20uC and relative humidity is

40%) (Van Wagner 1987). Derived from these three moisture codes and wind speed,

two indices provide a measure of the initial fire spread rate, the initial spread index

(ISI), and the total fuel available for combustion, the build-up index (BUI). The

FWI is then calculated from the combination of ISI and BUI (Van Wagner 1987).

The FWI is a useful measure of general fire danger for administrative purposes

over large geographic regions (Stocks et al. 1989). However, the FWI system does

not consider environmental conditions at finer spatial scales since it uses point

measurements from often widely dispersed weather stations. Fuel moisture

measurements made at weather stations, from meteorological variables, are limited

spatially because accuracy decreases as the distance between weather station

increases.

Satellite remote sensing potentially can complement current fire danger

measurements because it can map several CFFDRS parameters. These parameters

are not only related to topography, plant phenology, and fuel type, but also to fuel

moisture, which is an important FWI system parameter. In previous studies, fuel

moisture has been estimated primarily from NOAA-AVHRR normalized difference

vegetation index (NDVI) images alone, or in combination with absolute maximum

and minimum NDVI (relative greenness) (e.g. Paltridge and Barber 1988, Lopez et

al. 1991, Illera et al. 1996, Burgan et al. 1998, Chuvieco et al. 1999). Thermal-

infrared NOAA-AVHRR images also have been used (e.g. Dominguez et al. 1994,

Chuvieco et al. 1999) because surface temperatures (Ts) increase with drought

(Pierce et al. 1990).

An unavoidable problem of using optical and thermal-infrared remotely sensed

images, such as Ts and NDVI, is pixel contamination caused by clouds, directional

and off-nadir viewing effects, atmospheric interferences, solar angle effects, and

shadows. These effects can be minimized with the use of maximum value composite

(MVC) imaging techniques (Holben 1986). MVC images most often are created by

assigning to each pixel the maximum NDVI value for a particular pixel over a

composite period. Image composites of other variables retrieved from different

channels on the same satellite sensor, such as Ts, are created at the same acquisition

time as the maximum NDVI. In previous studies using MVC images, composite

periods varied from three days (Eidenshink et al. 1989) to ten days (Dominguez et al.

1994).

As reviewed by Leblon (2001, 2005) and Camia et al. (2003), most studies

estimating live fuel moisture used NOAA-AVHRR composite images, but other

studies have used these images for estimating dead fuel moisture as represented by

FWI system components. NOAA-AVHRR composite NDVI and Ts data were best

correlated to FWI codes representing slow-drying fuels (DMC, DC, and BUI) over

boreal forests and grasslands in Saskatchewan and Manitoba (Dominguez et al.

1994), northern boreal forests of the Mackenzie River basin, Northwest Territories

(Leblon et al. 2001), and Mediterranean forests of Andalucia, southern Spain

(Aguado et al. 2003). Aguado et al. (2003) attributed the good relationship between

slow-drying fuel moisture and spectral variables to the slow temporal change of both

the fuel moisture code and the spectral variables (DC time lag of 53 days and 10-day

MVC NOAA-AVHRR images).
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Desbois and Vidal (1995) showed that over Mediterranean forests, fire ignition

occurred primarily in the hot zones of NOAA-AVHRR Ts images acquired just

before a fire ignition date. Oldford et al. (2003) followed the method of Desbois and

Vidal (1995) and in 1994 found that over the northern boreal forests of the

Northwest Territories, Canada, there was a positive trend in mean Ts as the day of

fire ignition approached. Aguado et al. (2003) combined optical and thermal-

infrared NOAA-AVHRR images and successfully used them to model and map DC

in Mediterranean forests. Similar to the methods of Aguado et al. (2003), this study

modelled and mapped DMC and DC from optical and thermal-infrared images, but

in the northern boreal forests of Canada.

The objective of this study is to determine if NOAA-AVHRR optical and

thermal-infrared remote sensing images are related to slow-drying dead fuel

moisture conditions, as parameterized by DMC and DC of the FWI system, in

northern boreal forests. We used data acquired between 1993 and 1999 over boreal

forests in northern Alberta and southern Northwest Territories, Canada, and

developed multiple regression models between DMC and DC as dependent

variables, and spectral variables derived from 10-day composite NOAA-AVHRR

NDVI and Ts images as independent variables. Due to the complex structural nature

of boreal forests, canopies may not be fully closed. In this study, fuel moisture is

assessed from spectrally derived variables and refers to a mixture of both live canopy

fuel moisture and dead under-storey soil fuel moisture. By studying strictly boreal

forests, this study differs from previous ones that studied European Mediterranean

forests (e.g. Lopez et al. 1991, Illera et al. 1996, Camia et al. 1999, Chuvieco et al.

1999, Aguado et al. 2003) and boreal forest and grassland cover types over Western

Canada (Dominguez et al. 1994).

2. Methods

2.1 Study area

Our study area was located in northern Alberta and the southern Northwest

Territories, Canada, between 54u and 62u north latitude and 110u and 115u west

longitude (figure 1). Covering approximately 250,000 km2, it includes a variety of

forested and non-forested land cover types (figure 2). It is primarily within the

Boreal Plains Ecozone of Canada and includes portions of the Taiga Shield, Taiga

Plain, and Prairie Ecozones (Rowe 1972).

2.2 Materials

We used weather station, satellite imagery, and cartographic data collected between

1993 and 1999 (table 1).

Weather data, including noon-time dry bulb temperature, relative humidity, and

24-hour precipitation, collected daily at 75 different weather stations within the

study area (figure 2), were used to calculate DMC and DC components of the

Canadian FWI system. 10 m high open wind speed, a fourth weather variable used

in calculating the FWI, is not used in calculating DMC and DC. This variable is

used in calculating the FFMC, a quick-drying fuel moisture code, and the ISI, a

measure of potential initial fire spread rate.

A comparison between annual precipitation accumulation with respect to

climatologic normals showed that during the studied period, there were two wet
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years (1996 and 1997), three normal years (1993, 1994, and 1995), and two dry years

(1998 and 1999) (Oldford 2004).

Spectral data were used to model and map fuel moisture conditions within the
study area. A total of 140 NOAA-AVHRR 10-day MVC images (20 images per

year) were obtained between 11 April and 31 October. Images were acquired by the

NOAA-11 satellite in 1993 and 1994 and the NOAA-14 satellite between 1995 and

1999. The 10-day compositing was carried out at the Manitoba Remote Sensing

Center following the ‘Geocoding and Compositing’ (GEOCOMP) system developed

by the Canada Center for Remote Sensing (CCRS). Through this method, images

were georeferenced into a Lambert conformal conic projection. Each image had a

spatial resolution of 1 km2. Images were further processed with the Atmosphere,
Bidirectional, and Contamination Corrections Software System version 2 (ABC3v2)

(Cihlar et al. 1997a,b). This system applied refined radiometric calibration and other

product enhancements so images were as free as possible from residual error such as

the effects of not representing the surface under uniform illumination and viewing

conditions.

Ts images were derived from the brightness temperature of NOAA-AVHRR

channels four (10.3–11.3 mm) and five (11.5–12.5 mm), corrected for atmospheric and

surface emissivity effects. NDVI images were derived from NOAA-AVHRR
channels two (0.725–1.10 mm) and one (0.58–0.68 mm). NDVI images were corrected

with a bidirectional reflectance function (BDRF) based on BDRF-corrected surface

Figure 1. Study area location in Canada.
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reflectance for NOAA-AVHRR channels one and two. The cloud elimination from

composites using albedo and NDVI trend (CECANT) procedure, developed by

Cihlar (1996), was used to identify contaminated pixels in Ts and NDVI images. The

CECANT procedure identifies surface vegetation, bare soil, rock, or open water

Figure 2. Weather station locations within the study area and land cover derived from the
1998 SPOT-4 VEGETATION 12-class land cover map of Canada (after Cihlar et al. 2002).
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pixels that are obscured by clouds, partial clouds, cloud shadows, smoke, other

heavy aerosols, snow, and ice. For those contaminated pixels, seasonal interpolation

was used to correct NDVI and Ts images, provided that at least three

uncontaminated composite period values were available within a year (Canada

Center for Remote Sensing 2000). According to the Canada Center for Remote

Sensing (2000), this dataset approximates nadir-viewed composite images obtained

under cloud-free conditions during the growing season better than MVC alone.

NDVI and Ts images were used to compute the ratio between NDVI and Ts, and

relative greenness (RGRE). RGRE is derived from NDVI values and indicates how

green a pixel is in relation to its historical range of NDVI values (Burgan et al.

1996).

Spectral data were retrieved only from forested pixels, identified in the 1998

Canada-wide land cover map made from SPOT-4 VEGETATION images (figure 2)

(Cihlar et al. 2002).

Elevations of weather stations within the study area were determined from a

digital elevation map of Canada, with a spatial resolution of 1 km2 (Geogratis

Canada 2000). Elevation was considered because topographic conditions can

influence remote sensing data (Guindon et al. 1982, Teillet et al. 1982) and weather

station measurements (Flohn 1969).

2.3 Data analyses

DMC and DC were calculated from weather station data by using a SAS (SAS

Institute 2001) script provided by the Canadian Forest Service with latitude,

longitude, year, month, day, temperature, relative humidity, and precipitation as

inputs. Each DMC and DC record was assigned a time period corresponding to the

10-day period classification used in NOAA-AVHRR composite images. Medians

Table 1. Spatial and temporal resolutions of spectral, weather and cartographic data used in
this study.

Data type/
variable(1) Year(s)

Resolution Data source

Spatial(2) Temporal Source Agency(3)

Spectral
Ts 1993–1999 1 km2 10 days 10-day MVC NOAA-

AVHRR
CCRS

NDVI 1993–1999 1 km2 10 days 10-day MVC NOAA-
AVHRR

CCRS

Land cover 1998 1 km2 1 year SPOT-4 VEGETATION CCRS
Weather
DMC & DC 1993–1999 Point source Daily Weather stations EC
DMC & DC 1993–1999 Point source Daily Weather stations AB
DMC & DC 1993–1999 Point source Daily Weather stations NT
DMC & DC 1993–1999 Point source Daily Weather stations WB
Cartographic
Elevation 1999 1 km2 1 year DEM of Canada Geogratis

(1)DC, drought code; DMC, duff moisture code; NDVI, normalized difference vegetation
index; Ts, surface temperature.
(2)Point source: spatial resolution is variable depending on the density of weather stations.
(3)AB, Alberta Department of Energy and Environment; CCRS, Canada Center for Remote
Sensing; EC, Environment Canada; NT, Northwest Territories Forest Management Division;
WB, Wood Buffalo National Park.
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were calculated for each image period/station group because they were less affected

than means by extreme observations that potentially resulted from data processing

errors. Weather station medians were excluded from further analysis if any data

were missing within a 10-day period. This resulted in 15% of periodic weather

station data being excluded from further analysis.

A point location map of the 75 study area weather stations was overlaid on the

study area land cover map (figure 2) and 363 pixel windows (9 km2) were identified

in a block of continuous forested land nearest to each weather station. Forested land

was defined as any of the four ‘tree dominated’ land types classified in the 1998

SPOT-4 VEGETATION land cover map of Canada (Cihlar et al. 2002) (figure 2).

Forested land types included closed canopy coniferous, closed canopy mixedwood,

open canopy coniferous, and open canopy mixedwood. A coniferous forest type is

defined as having greater than 75% of the tree canopy composed of evergreen

needle-leaf tree species. A mixedwood forest type is defined as having between 25

and 75% of the total tree cover composed of evergreen needle-leaf or deciduous

broad-leaf tree species. Closed canopy conditions are defined as having greater than

60% crown cover, and open canopy conditions are defined as having between 25 and

60% crown cover (Cihlar et al. 2002). Pixel windows were identified on each NOAA-

AVHRR image, and the values for NDVI, RGRE, Ts, and NDVI/Ts variables were

extracted. Medians of nine pixel window values were calculated for each of the 140

images, 75 weather stations, and four spectral variables.

Both the DC and DMC median values and spectral values were used first in

correlation analysis and then in a forward stepwise multiple regression analysis

using the PROC REG procedure of SAS (SAS Institute 2001). A detailed

description of study methodologies is given in Oldford (2004).

3. Results and discussion

3.1 Temporal and spatial variability of FWI codes and spectral variables

Both FWI codes and spectral variables exhibited temporal (figure 3) and spatial

(figure 4) variability. Factors influencing temporal variability include year and

season (as represented by the 10-day composite period), whereas those influencing

spatial variability include elevation, latitude, and broad forest cover type at weather

stations. An F-test analysis was conducted to determine the relative influence of

these factors on FWI codes and spectral variables (table 2). Different satellite

overpass times meant that spectral differences existed in data acquired from NOAA-

11 and NOAA-14 years. Thus, separate ANOVA tests were performed for each

satellite dataset.

For both satellite datasets, temporal factors and their interactions had the greatest

influence on DC and DMC and on spectral variables. Generally, year had a greater

influence on DC and DMC than the year’s period, and the opposite was true for

spectral variables, particularly for the NOAA-14 dataset. As a result, wet or dry

years had a greater influence on DC and DMC than on spectral variables.

The influence of period was stronger for DC than DMC because DC showed an

increasing trend throughout the growing season (figure 3(a)), while DMC was more

variable (figure 3(b)). NDVI, RGRE, and Ts followed clear seasonal trends and were

influenced less by yearly variations (figure 3(c), (d), (e)).

As expected, different forest cover type had a noticeable influence on NDVI. In

all years, mean open coniferous NDVI values were 10%, 15%, and 11% less than
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Figure 3. Mean values recorded at all weather stations during the study periods for: (a) DC,
(b) DMC, (c) NDVI, (d) RGRE, (e) Ts, and (f) NDVI/Ts. Thin coloured lines represent yearly
averages and thick black lines represent study period (1993–1999) averages.
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Figure 4. Study area maps of: (a) DC, (b) DMC, (c) NDVI, (d) RGRE, (e) Ts, and (f)
NDVI/Ts, showing spatial variability in a wet year (1996) and a dry year (1998) during
summer (period 12).
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those of closed coniferous, closed mixedwood, and open mixedwood, respectively

(Oldford 2004). Closed coniferous and open mixedwood NDVI values were not

significantly different. Closed mixedwood NDVI values were significantly greater

than closed coniferous and open mixedwood NDVI values in all years except 1996

and 1997 (wet years). The variations in mean NDVI observed between forest cover

types were consistent with those found in other studies. In particular, a study of

mean NDVI profiles of 12 different land cover types in BOREAS sites with NOAA-

AVHRR images collected in 1992 showed that mean NDVI values were greater in

Table 2. F-values from an analysis of variance used to assess the relative effects of year,
period, broad forest cover type, elevation, and latitude on DC, DMC, NDVI, RGRE, Ts, and

NDVI/Ts in NOAA-11 years, and in NOAA-14 years.

Satellite
category/factors

Degrees of
freedom

F-test values for variables tested(1)

DC DMC NDVI RGRE Ts NDVI/Ts

NOAA-11 years (1993–1994) N51629, Residual error50
Year 1 22.68 7.43 53.48 25.94 1.14 0.80
Period 19 34.70 5.83 34.21 52.40 23.92 26.67
Cover(2) 3 13.18 7.24 37.59 2.73 2.45 39.12
Latitude(3) 3 4.27 1.05 1.93 2.02 2.25 18.43
Elevation(4) 3 7.58 4.15 5.68 4.79 1.87 19.92
Year*period 19 10.97 23.04 7.14 14.30 9.70 16.67
Year*cover 3 5.37 2.94 5.91 1.79 0.18 0.73
Year*latitude 3 3.91 13.44 4.91 2.33 0.89 0.54
Year*elevation 3 25.75 8.82 3.51 0.29 13.47 6.95
Period*cover 52 1.78 0.76 2.47 2.02 1.35 15.62
Period*latitude 52 1.31 1.11 0.69 1.13 1.22 21.18
Period*elevation 53 1.07 0.51 0.65 1.14 0.92 11.62
Cover*latitude 5 3.48 0.94 5.74 2.11 2.20 1.64
Cover*elevation 5 0.50 0.20 5.70 3.26 1.38 4.20
Latitude*elevation 5 5.24 3.49 5.61 0.36 2.30 2.25
NOAA-14 years (1995–1999) N54083, Residual error50
Year 4 183.32 105.06 42.30 50.16 54.82 3.48
Period 19 79.57 12.22 156.30 177.55 116.30 5.50
Cover(2) 3 20.43 5.28 131.17 4.72 14.21 2.36
Latitude(3) 3 6.73 9.75 34.27 0.17 4.66 6.60
Elevation(4) 3 45.55 43.97 29.82 7.37 29.73 22.43
Year*period 76 16.46 15.92 12.00 14.37 16.66 5.73
Year*cover 12 10.75 2.99 3.97 4.32 1.25 1.08
Year*latitude 12 14.44 9.71 4.64 5.15 3.28 3.62
Year*elevation 12 4.70 4.58 1.77 2.99 1.64 2.39
Period*cover 57 0.50 2.50 3.60 2.39 2.21 1.37
Period*latitude 57 2.19 1.85 2.40 2.64 2.46 6.57
Period*elevation 57 2.38 1.95 1.42 2.33 1.24 7.68
Cover*latitude 4 3.72 1.02 15.36 21.02 18.59 1.62
Cover*elevation 5 6.83 2.98 17.86 7.94 1.90 0.65
Latitude*elevation 5 6.20 22.81 17.17 9.41 4.74 2.90

(1)Plain font (ex. 0.45) not significant, bold font (ex. 0.45) significant at a50.05, bold
underlined font (ex. 0.45) significant at a,0.0001.
(2)Cover categories: closed coniferous, closed mixedwood, open coniferous, and open
mixedwood.
(3)Latitude categories: 54–55uN, 56–57uN, 58–59uN, and 60–62uN.
(4)Elevation categories: 0–250 m, 251–500 m, 501–750 m, 751–1000 m.
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mixed forests than conifer forests (Steyaert et al. 1997). Duchemin et al. (1999)

examined the NDVI recorded from NOAA-AVHRR images between 1988 and 1990

in France, and found that as the pine composition of mixed forests increased, NDVI

decreased.

3.2 DMC and DC modelling

Modelling DMC and DC from spectral variables was performed for 44 temporal

categories. Eleven categories were based on individual years, combined NOAA-11

years (1993–1994), combined NOAA-14 years (1995–1999), wet years (1996–1997),

and dry years (1998–1999). Each year was subdivided into four seasonal groups,

including the entire season (11 April–31 October), spring (11 April–20 June),

summer (21 June–20 September), and fall (21 September–31 October). In each case,

regressions were computed for all stations combined and for stations grouped based

on elevation, latitude, or broad forest cover type.

The average temperatures observed during spring, summer, and fall periods

were 14uC, 18uC, and 7uC, respectively. The warmest year was 1998 (a dry year),

with average spring, summer, and fall temperatures of 16uC, 20uC, and 8uC,

respectively. The coolest year was 1996 (a wet year), with average spring,

summer, and fall temperatures of 13uC, 17uC, and 4uC, respectively. The average

total rainfall observed during spring, summer, and fall periods were 87 mm,

193 mm, and 26 mm, respectively. The driest year was 1998, with average total

spring, summer, and fall rainfalls of 47 mm, 163 mm, and 21 mm, respectively.

The wettest year was 1996, with average spring, summer, and fall rainfalls of

123 mm, 236 mm, and 44 mm, respectively. The apparent low total fall rainfall

amounts were due to fewer weather stations collecting data for the entire fall

season. In reality, fall is typically wetter than spring or summer in Canada’s

boreal forests.

Significant correlations were found in 86% of spring cases, 71% of summer cases,

64% of entire year cases, and 18% of fall cases (table 3). Spring Pearson’s correlation

coefficients for DMC and DC were, respectively, 59% and 73% greater than those of

other seasons. Overall, DMC was correlated most often to Ts, and DC to NDVI

(table 3). While a number of correlations were significant (p,0.05), quite often their

Pearson’s correlation coefficients were low. This meant that, individually, spectral

variables were poor indicators of DMC and DC.

The strongest correlations for both DMC and DC occurred in 1993 and 1995 (two

normal rainfall years), and the weakest were in 1998 (a dry year). For DMC, the

highest correlation (r50.58) occurred with Ts in the spring of 1993. For DC, the

highest correlation (r50.68) occurred with RGRE in the spring of 1995. Previous

studies also have found strong correlations between DC and NDVI. Negative r

values between NDVI and DC were observed previously by Camia et al. (1999) over

Mediterranean shrublands and grasslands, by Aguado et al. (2003) over

Mediterranean forests, and by Dominguez et al. (1994) over Canadian boreal

forests and grasslands. Positive r values, like those of this study, were observed by

Leblon et al. (2001) over northern boreal forests for the whole year. Positive

relationships between DC and Ts were observed over Mediterranean forests

(Aguado et al. 2003), but not over Mediterranean shrublands and grasslands (Camia

et al. 1999) and over Canadian boreal forests and grasslands (Dominguez et al.

1994).
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Forward stepwise regressions between slow-drying FWI fuel moisture codes and

spectral variables were generally stronger for DC than for DMC, with larger

adjusted R2 values reported in 65% of significant cases (table 3). When all stations

were combined and analysed for the entire season, significant relationships with

DMC and DC were observed for all annual categories, except for DMC in 1998 (a

dry year). While many relationships were significant (p,0.05), they explained little

Table 3. Pearson’s correlation coefficients and stepwise regression model adjusted R2 values
for relationships between spectral variables and slow-drying fuel moisture codes during all

season, spring, summer, and fall periods.

Season Year(s) N

Pearson’s correlation coefficients(1) Stepwise
regression
adj. R2(1)DMC DC

NDVI RGRE Ts

NDVI/
Ts NDVI

RGR-
E Ts

NDVI/
Ts DMC DC

All
season
periods
(1 to 20)

1993 816 0.05 0.16 0.34 20.12 20.04 0.14 0.08 0.06 0.12 0.08
1994 813 20.28 20.11 0.16 20.15 20.42 20.3620.10 20.02 0.16 0.18
1995 790 20.04 0.03 0.16 20.16 0.18 0.25 0.06 0.05 0.03 0.07
1996 772 20.08 0.09 0.33 20.20 20.07 0.15 0.07 20.09 0.19 0.17
1997 756 20.10 20.03 0.26 20.12 0.15 0.24 0.17 20.06 0.12 0.06
1998 843 20.01 0.01 0.04 20.06 20.06 0.0220.05 0.07 0.00 0.02
1999 922 0.03 0.04 0.18 20.09 0.15 0.12 0.08 0.12 0.04 0.05
Dry 1765 0.07 0.09 0.11 20.06 0.06 0.09 0.03 0.09 0.01 0.02
Wet 1528 20.09 0.04 0.31 20.13 0.04 0.20 0.13 20.07 0.16 0.09
NOAA-

11
1629 20.09 0.05 0.24 20.13 20.23 20.1220.02 0.02 0.10 0.07

NOAA-
14

4083 20.02 0.03 0.16 20.09 0.05 0.11 0.08 20.01 0.03 0.02

Spring
periods
(1 to 7)

1993 331 0.45 0.55 0.58 20.21 0.55 0.65 0.56 20.14 0.46 0.53
1994 290 20.24 20.06 0.24 20.37 0.16 0.37 0.45 20.34 0.18 0.26
1995 287 0.40 0.51 0.50 20.12 0.65 0.68 0.46 0.08 0.32 0.49
1996 272 0.13 0.31 0.44 20.15 0.49 0.62 0.56 20.15 0.27 0.45
1997 275 20.24 20.21 0.05 20.28 0.43 0.51 0.46 20.01 0.09 0.31
1998 313 0.23 0.23 0.17 0.03 0.51 0.56 0.50 0.01 0.06 0.42
1999 328 0.13 0.08 0.33 20.15 0.47 0.42 0.51 20.07 0.10 0.37
Dry 641 0.31 0.28 0.29 20.01 0.53 0.52 0.53 20.02 0.13 0.43
Wet 547 20.02 0.11 0.28 20.14 0.46 0.57 0.49 20.10 0.13 0.37
NOAA-

11
621 0.03 0.14 0.43 20.32 0.33 0.45 0.51 20.23 0.21 0.34

NOAA-
14

1475 0.23 0.26 0.27 20.06 0.50 0.54 0.45 20.03 0.09 0.35

Summer
periods
(8 to 16)

1993 452 20.18 0.10 0.24 20.27 20.41 20.12 0.15 20.34 0.12 0.21
1994 475 20.39 20.25 0.07 20.32 20.58 20.5120.11 20.28 0.18 0.34
1995 440 20.23 0.01 0.17 20.20 20.09 20.0620.06 0.00 0.12 0.01
1996 432 20.28 0.12 0.27 20.31 20.47 20.07 0.16 20.33 0.17 0.25
1997 431 20.19 0.00 0.26 20.30 20.29 20.13 0.16 20.25 0.10 0.11
1998 457 20.12 20.07 0.00 20.04 20.29 20.2120.18 20.01 0.01 0.13
1999 518 20.02 0.08 0.26 20.25 0.09 20.02 0.07 20.01 0.08 0.03
Dry 975 0.00 0.07 0.10 20.08 20.07 20.0820.05 0.00 0.01 0.01
Wet 863 20.22 0.07 0.28 20.31 20.36 20.08 0.18 20.30 0.12 0.15
NOAA-

11
927 20.17 0.01 0.17 20.24 20.44 20.29 0.01 20.28 0.10 0.20

NOAA-
14

2278 20.11 0.00 0.21 20.21 20.22 20.17 0.09 20.19 0.05 0.06
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variation, with an adjusted R2 range of 0.01–0.19 for DMC and 0.02–0.18 for DC

(table 3).

In most cases, relationships with all stations combined improved when the

analysis considered seasonal periods separately. The greatest improvement occurred

in spring, when all models were significant (p,0.0001) and adjusted R2 ranged from

0.06–0.46 for DMC and 0.26–0.53 for DC. In summer, all models were significant

(p,0.05) and adjusted R2 ranged from 0.01–0.18 for DMC and 0.01–0.34 for DC. In

fall, significant DMC models existed in 1994, 1995, 1997, and 1999, as well as for

wet years and NOAA-14 years, and significant DC models existed in all years,

except 1996 and 1998. Adjusted R2 in fall cases ranged from 0.06–0.30 for DMC and
0.02–0.31 for DC. RMSE of DMC models ranged from 10.24–25.62 for the entire

season, 8.56–24.74 for spring, 8.61–31.07 for summer, and 6.56–28.34 for fall.

RMSE of DC models ranged from 83.83–138.39 for the entire season, 34.34–57.17

for spring, 81.10–115.70 for summer, and 75.77–154.20 for fall (Oldford 2004). For

both DMC and DC models and all four seasonal categories, the lowest RMSE were

observed in wet years (1996, 1997) and all the years combined, and the highest

RMSE were in 1998 (a dry year) (Oldford 2004). Because the majority of models

tested performed better in the spring, further regression analyses considering the
effects of spatial factors (elevation, latitude, and broad forest cover type) were

performed on this season only.

3.3 Spring period DMC and DC modelling

Stepwise multiple regression models predicted DMC and DC in spring reasonably

well from NOAA-AVHRR spectral variables, with all models being significant and

with quite high adjusted R2 values (table 4). The spectral variables most often used

in stepwise regression spring models for all stations in different yearly categories
were RGRE and Ts (Oldford 2004). During spring, both spectral variables and the

slow-drying fuel moisture codes increased, but for different reasons. DC, DMC, and

Season Year(s) N

Pearson’s correlation coefficients(1) Stepwise
regression
adj. R2(1)DMC DC

NDVI RGRE Ts

NDVI/
Ts NDVI

RGR-
E Ts

NDVI/
Ts DMC DC

Fall
periods
(17 to
20)

1993 33 20.33 20.18 20.10 0.05 20.46 20.19 0.28 20.12 0.08 0.19
1994 48 0.14 0.29 0.34 20.10 20.33 20.22 0.13 20.06 0.16 0.09
1995 63 0.08 0.03 0.51 20.45 20.08 20.19 0.14 20.19 0.30 0.09
1996 68 0.14 0.05 0.00 0.10 20.18 20.1220.15 20.11 0.02
1997 50 0.25 0.08 0.45 20.14 0.29 20.33 0.14 20.24 0.21 0.31
1998 73 20.22 20.13 0.09 20.12 20.01 0.0520.02 20.10 0.04
1999 76 0.40 0.11 0.18 0.02 0.39 0.16 0.22 20.06 0.16 0.14
Dry 149 20.02 20.03 0.14 20.10 0.18 0.13 0.10 20.09 0.01 0.02
Wet 118 0.15 0.04 0.38 20.10 0.05 20.24 0.06 20.20 0.13 0.10
NOAA-

11
81 0.03 0.14 0.20 20.08 20.39 20.26 0.14 20.10 0.03 0.15

NOAA-
14

330 0.00 20.02 0.24 20.08 0.03 20.05 0.23 20.14 0.06 0.06

(1)Plain font (ex. 0.45) not significant, bold font (ex. 0.45) significant at a50.05, bold
underlined font (ex. 0.45) significant at a,0.0001.

Table 3. (Continued.)
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Table 4. Results of stepwise regression models of DMC and DC during spring periods, as a function of year(s), broad forest cover, station latitude, and
elevation. Number of observations (N), root mean squared errors (RMSE), and adjusted R2(1) are presented.

Year(s)

All stations

Broad forest cover(2) Latitude Elevation

cc cm oc om 54–57 58–62 0–250 251–500 501–750 751–1000

N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2

Duff moisture code

1993 330 13.9 0.46 35 8.6 0.60 59 10.3 0.66169 15.8 0.40 64 12.9 0.49 265 12.8 0.50 64 17.1 0.40 41 17.7 0.42 59 13.3 0.28 163 13.8 0.52 64 9.0 0.64

1994 289 16.0 0.18 31 8.8 0.26 57 18.7 0.16141 18.2 0.07 57 10.8 0.21 234 13.2 0.18 54 18.1 0.37 32 16.3 0.54 54 17.1 0.25 142 11.2 0.20 58 10.1 0.18

1995 286 20.0 0.32 38 19.5 0.31 65 17.5 0.40136 22.2 0.24 44 16.7 0.52 214 20.1 0.28 71 19.5 0.46 36 18.7 0.57 61 20.5 0.41 130 20.3 0.27 56 15.4 0.27

1996 271 10.9 0.27 28 6.7 0.20 50 6.0 150 13.3 0.22 40 7.2 0.23 203 7.0 0.27 67 15.8 0.22 31 11.9 0.31 62 14. 7 0.27 122 5.9 0.17 53 7.5 0.19

1997 274 8.6 0.09 31 4.4 0.63 63 7.3 0.26142 9.3 0.04 35 8.2 0.16 210 8.4 0.09 63 9.0 0.11 30 8.3 64 10.6 0.06 118 6.5 0.18 59 5.0 0.28

1998 312 24.7 0.06 48 25.9 0.05 61 23.4 0.09159 25.3 0.09 41 20.1 224 22.2 0.04 87 29.4 0.15 36 26. 6 0.17 71 27.5 0.07 132 25.0 0.05 70 16.7 0.13

1999 327 12.3 0.10 42 10.1 0.27 64 13.9 0.07177 11.9 0.18 41 7.1 0.33 243 12.5 0.13 83 11.6 0.08 35 11.1 0.08 81 13.3 0.19 141 13.0 0.03 67 6.5 0.24

Wet 640 21.3 0.13 91 20.5 0.15 126 21.9 0.09337 21.7 0.15 83 17.4 0.22 468 19.7 0.15 171 24.6 0.15 72 22.6 0.16 153 22.9 0.13 274 21.7 0.13 138 14.6 0.27

Dry 546 10.3 0.13 60 5.5 0.43 114 7.7 0.10293 12.1 0.11 76 8.3 0.05 414 8.1 0.11 131 14.3 0.13 62 11.7 0.14 127 13.3 0.15 241 6.7 0.05 113 6.7 0.12

NOAA-

11

620 16.6 0.21 67 10.6 0.30 117 16.7 0.27311 18.0 0.17 122 15.2 0.14 500 15.6 0.18 119 17.9 0.38 74 18.0 0.45 114 16.8 0.10 306 16.5 0.18 123 12.0 0.28

NOAA-

14

1474 20.9 0.09 191 20.2 0.11 307 21.3 0.06768 21.3 0.10 205 19.2 0.13 1098 20.0 0.08 375 22.8 0.13 172 21.3 0.18 343 22.0 0.11 647 21.3 0.07 309 15.6 0.12

Drought code

1993 330 39.4 0.53 35 35.9 0.48 59 39.7 0.56169 40.7 0.51 64 32.1 0.70 265 36.8 0.59 64 48.7 0.32 41 52.8 0.32 59 36.3 0.55 163 37.6 0.60 64 33.5 0.56

1994 289 44.9 0.26 31 33.5 0.38 57 45.3 0.30141 49.4 0.24 57 31.8 0.25 234 40.2 0.27 54 49.1 0.45 32 50.5 0.53 54 50.9 0.30 142 34.5 0.25 58 36.6 0.13

1995 286 51.9 0.49 38 41.0 0.65 65 42.3 0.71136 56.9 0.34 44 38.3 0.75 214 50.9 0.52 71 51.7 0.46 36 49.5 0.55 61 50.3 0.55 130 54.7 0.49 56 36.9 0.65

1996 271 34.3 0.45 28 26.1 0.51 50 32.3 0.31150 35.8 0.49 40 25.7 0.58 203 30.3 0.46 67 44.8 0.36 31 41.9 0.43 62 33.5 0.66 122 29.8 0.38 53 23.7 0.41

1997 274 34.5 0.31 31 27.4 0.55 63 31.5 0.28142 36.0 0.32 35 33.6 0.36 210 30.6 0.36 63 43.7 0.26 30 39.4 0.48 64 28.8 0.64 118 26.7 0.31 59 23.7 0.35

1998 312 57.2 0.42 48 45.9 0.54 61 50.8 0.52159 61.2 0.40 41 45.8 0.56 224 55.7 0.41 87 61.4 0.43 36 63.0 0.47 71 54.1 0.56 132 55.3 0.41 70 48.3 0.48

1999 327 47.5 0.37 42 38.3 0.40 64 49.0 0.35177 46.9 0.42 41 38.9 0.57 243 48.4 0.39 83 41.3 0.38 35 39.0 0.51 81 47.5 0.47 141 52.6 0.30 67 30.3 0.53

Wet 640 52.7 0.43 91 43.3 0.49 126 51.2 0.44337 54.2 0.44 83 43.5 0.57 468 52.3 0.42 171 53.4 0.44 72 53.1 0.50 153 51.3 0.54 274 54.0 0.39 138 42.5 0.48

Dry 546 34.9 0.37 60 27.6 0.50 114 32.0 0.29293 36.7 0.40 76 30.1 0.45 414 30.8 0.40 131 43.8 0.34 62 39.9 0.47 127 32.5 0.62 241 28.9 0.32 113 24.6 0.35
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Year(s)

All stations

Broad forest cover(2) Latitude Elevation

cc cm oc om 54–57 58–62 0–250 251–500 501–750 751–1000

N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2 N RMSE R2

NOAA-

11

620 44.6 0.34 67 40.2 0.24 117 45.3 0.37311 47.0 0.33 122 38.0 0.41 500 42.7 0.34 119 50.6 0.35 74 54.5 0.38 114 47.3 0.33 306 40.3 0.39 123 41.2 0.20

NOAA-

14

1474 52.5 0.35 191 45.8 0.42 307 54.0 0.36768 53.0 0.34 205 48.8 0.44 1098 52.7 0.33 375 52.0 0.38 172 48.9 0.49 343 49.6 0.48 647 55.2 0.29 309 43.5 0.37

(1)Plain font (ex. 0.45): not significant, bold font (ex. 0.45): significant at a50.05, bold underlined font (ex. 0.45): significant at a,0.0001, blank cells: no
variables met the a (0.15 requirement for entry into the stepwise regression model.
(2)cc: closed coniferous, cm: closed mixedwood, oc: open coniferous, and om: open mixedwood.

Table 4. (Continued.)
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Ts increased because of low precipitation and increasing air temperatures, while

NDVI and RGRE increased because of vegetation green-up. Leblon et al. (2001)

reached a similar conclusion regarding high correlation between DC or DMC and

cumulative NDVI data from northern boreal forests.

Good spring model performance was consistent with results over Mediterranean

forests of southern Spain. Aguado et al. (2003) found spectral models predicted DC

better in later summer and fall, the driest seasons in Mediterranean climates. Under

boreal conditions (particularly in Western Canada), the driest season is spring, when

there is less rainfall and often little melting snow to saturate soils. Also, frost and

frozen soil in early spring may make soil water unavailable.

DMC models were the best during two normal rainfall years, 1993 (adjusted

R250.46) and 1995 (adjusted R250.32). In all years, DC models produced better

results than DMC models, with adjusted R2 values between 0.26 and 0.53.

When weather station locations were categorized by broad forest cover type,

DMC and DC model variability were best explained in closed coniferous and open

mixedwood types with higher adjusted R2 values more often than those of closed

mixedwood and open coniferous types (table 4). RMSE of DMC and DC models

were lower for closed coniferous and open mixedwood types more often than those

of closed mixedwood and open coniferous types. When weather station locations

were categorized by latitude, compared with all station locations combined, DMC

and DC models had higher adjusted R2 values for both low and high latitude

locations at different temporal periods (table 4). RMSE of DMC and DC models for

low latitude station locations were slightly lower than those of high latitude station

locations in most years, except in 1995 and 1999 for DMC and 1999 and NOAA-14

years for DC. When weather station locations were categorized by elevation, DMC

and DC model variability were best explained in 0–250 m, 251–500 m, and 751–

1000 m categories with higher adjusted R2 values more often than those of the 501–

750 m category (table 4). RMSE of DMC and DC models were lower for the

751–1000 m category more often than other elevation categories.

One of the greatest model improvements resulting from categorizing weather

station locations spatially was for DC in the spring of 1995, for stations grouped by

broad forest cover types. In this case, non-spatially categorized adjusted R2 was

0.49. Adjusted R2 values were higher for closed coniferous stations (0.65), for closed

mixedwood stations (0.71), and for open mixedwood stations (0.75), but were lower

for open coniferous stations (0.34) (table 4). The reduced adjusted R2 for open

coniferous cover types may have resulted from this cover type being composed of a

mixture of shrub, moss, lichen, and soil under-storeys. For this land cover class, DC

models saturated at observed DC values somewhere between 125 and 175, which

corresponds to the DC threshold values of 140 between low and moderate danger

rating (figure 5). The saturation observed in DC models likely resulted from the

inclusion of NDVI or RGRE as model independent variables. These spectral

variables have a maximum value (as shown in Oldford 2004), while DC did not have

a maximum value limit.

3.4 DC mapping

For demonstration purposes, the four DC models (closed and open coniferous and

mixedwood) developed for 1995 (figure 5) were used to map DC in period 6 (1–10

June 1995) for a 15615 pixel area located in the south of the study area surrounding

a fire that started on 2 June 1995 and burned 162 ha in the next 16 days (figure 6).
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The 15615 pixel area was almost completely composed of tree-dominated cover

with open coniferous, closed coniferous, closed mixedwood, and open mixedwood

making up 56%, 20%, 15%, and 7% of the area, respectively. The fire shown in the

centre of the 15615 pixel area was classified by the Sustainable Resource

Development Department of Alberta as a surface fire, caused by lightning. Two

weather stations were located between 30 km and 35 km south and north of the fire.

Comparisons between the spectrally derived maps and weather station interpolated

DC maps showed how improved spatial resolution can be achieved at the pixel level

using remote sensing images compared with weather station interpolation. The

region that burned from 2–17 June 1995 was located in a closed coniferous cover

type to the south, and an open coniferous cover type to the north. It was interesting

to observe that the fire burned in a closed coniferous forest cover type that was

classified as having a high DC danger rating when the NOAA-AVHRR image was

used, but it was classified as having a moderate DC danger rating in the weather

station-based map. In this case, remote sensing has the potential to be more useful

than the weather station-based map in predicting drought conditions in relationship

Figure 5. Plots of observed vs. predicted DC characterized by four broad forest cover types
in spring 1995. Predictions were made with the following models: (a) DC52434.52 + 1041.13
NDVI – 2.68 RGRE + 3.70 Ts; (b) DC5257.36 + 2.79 RGRE + 2.51 Ts; (c) DC5224.88 + 2.52
RGRE; (d) DC540.37 + 3.59 RGRE – 3028.04 NDVI/Ts. Solid lines represent a 1:1
relationship.
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Figure 6. Comparison between DC mapped by weather station interpolation and stepwise multiple regression models for period 6 (1–10 June), 1995. The
fire polygon corresponds to a 162 ha area burned between 2–17 June 1995.
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to fire occurrence. However, the regions having an open coniferous cover type

corresponded to a low DC danger rating on the spectrally derived map, compared to

a moderate DC danger rating on the weather station-based map. This was expected

because spectrally derived DC models for open coniferous cover types explained

only 34% of the variation and underestimated DC values beyond about 140 (low

danger category).

4. Conclusions

The objective of this study was to determine if NOAA-AVHRR optical and

thermal-infrared remote sensing images were related to slow-drying fuel moisture

conditions, as parameterized by DMC and DC of the FWI system. In doing so, it

was found that temporal (year and season) and spatial factors (broad forest cover

types, elevations, latitudes) had a great influence on DMC, DC, NDVI, RGRE, Ts,

and NDVI/Ts. Because of the influence of these factors, data were grouped into

temporal and spatial categories for modelling purposes. By combining spectral

variables through linear stepwise multiple regression, DC predictions were stronger

than DMC predictions. Better results were observed under spring conditions than in

summer, fall, or the entire year.

Single 10-day composite NOAA-AVHRR optical and thermal-infrared images

could predict slow-changing fuel moisture conditions under spring conditions in

certain years, with the best results being observed in closed coniferous and closed

and open mixedwood areas. These images were poor predictors of DMC and DC for

other seasons, probably because they do not consider previous period effects on the

spectral response of the forest. Further studies are needed to test if results could be

improved using multi-period NOAA-AVHRR images, such as in Dominguez et al.

(1994) and Leblon et al. (2001). While promising results were observed in some

cases, it was not possible to establish a single generalized model to predict slow-

drying fuel moisture codes with NOAA-AVHRR images under all conditions.

NOAA-AVHRR images with a 1 km spatial resolution might be too coarse for

approximating the diverse conditions found in Canada’s boreal forest. Remotely

sensed images with improved spatial resolutions, like those provided by the MODIS

sensor, with a spatial resolution of 250 m should be tested. However, like AVHRR,

MODIS images cannot be acquired during cloudy conditions. Such a limitation is

overcome with SAR images like those provided by ERS-1, ENVISAT, and

RADARSAT. ERS-1 and RADARSAT-1 SAR images have been related to FWI

codes and indices (Bourgeau-Chavez et al. 1999, Abbott et al. 2002, Leblon et al.

2002), but these studies occurred in homogeneous stands. Further work is needed to

assess the potential use of SAR images in estimating FWI codes and indices in large

and diverse areas, like the one of this study.

This research is necessary because new research shows that boreal forest fires are

increasing in number, area, and occurrence, which may be linked to global climate

change. With an improved understanding of the relationship between remotely

sensed spectral data and fuel moisture conditions, fire danger prediction can be

improved.
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